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LETTER TO THE EDITOR 

Collapse transition in a simple polymer model: exact results 

P-M Binder, A L Owczarek, A R Veal and J M Yeomans 
Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 21 June 1990 

Abstract. We calculate the exact values of the thermodynamic parameters at the 
collapse transition of a directed polymer with attractive nearesbneighbour interac- 
tions. 

In a recent letter [l], the polymer collapse (coil-globule) transition was modelled by a 
directed self-avoiding walk with attractive nearest-neighbour interactions. Numerical 
results were obtained for this model, which led to a conjecture for the exact values of 
the thermodynamic parameters at the collapse transition. In this letter we prove that 
the result is indeed exact. 

We consider the polymer in figure 1 on an infinite lattice; the polymer is directed 
in that steps in the negative x direction are forbidden. Hence, the position of the 
polymer in column i, ni, is single-valued and is given by the height of the directed 
bond from a fixed reference level. We consider the statistical properties of an ensemble 
of polymer chain conformations at a given chemical potential, p ,  which controls the 
average chain length [2]. Interactions are introduced through an attractive energy, 
- J ,  between bonds which occupy the same row in adjacent columns (see figure 1j. 
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Figure 1. A polymer directed along the z axis. Monomer-monomer interactions 
are represented by wavy lines. 

The grand canonical energy of a particular polymer configuration with L,  steps 
in the x direction is 
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where ui = (ni-l - ni) is the height difference between neighbouring columns and 
both ti and mi are functions of ui as follows: 

ti = 1 + (IuiI + )ui+lI> /2 (2) 

and 

Note that u1 and tiLzt1 fix the positions of the ends of the polymer chain. The 
partition function for all walks with L,  steps can be written 

where the summation is over all polymer configurations given by the set of all possible 
integer values {ui : i = 1,. . . , L,}. Defining a transfer matrix, T, by 

(.j, .i+l) = exP [bti + Jmi) IkBT] ( 5 )  

the partition function, (4), can be rewritten as the trace of the L,th power of T, 

where 

+ (ui) = ~ X P  [ (P I ~ i l )  / 2 k ~ q .  

As usual, the trace is dominated by the largest eigenvalue o 

- as L,  + 00. 

(7) 

T, A,, for large L,  and 

Summing over L,  gives the grand partition function for all walks on the lattice, 

z =  C z L * =  c w  L M  r 
L,=O walks 

(9) 

where w = exp (p/kBT), T = exp ( J / k , T ) ,  L is the total length of the walk and M is 
the number of nearest-neighbour interactions. 

The grand potential for the polymer is defined by 

(10) R ( p ,  J) = -kBTln 2 = -/A ( L )  - J ( M )  

where (. . .) denotes the thermodynamic average of a quantity. As A, + 1-, the grand 
potential diverges and (substituting the form (8) into the sum (9)) 

R-kBTln [ l -X , (w , r ) ]  asX,+1-. (11) 
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Physically, this is associated with the divergence of the average length of the polymer, 
( L ) .  If A, (w, T )  approaches 1 continuously as w is varied at  a fixed value of T ,  we can 
define a critical value of w ,  w* ( r ) ,  by 

A, [w* (.)I = 1. (12) 

The numerical results presented in [l] suggested that the polymer model has a line of 
critical values, w* (T), up to  a tricn'tical point found at 

(w*, T*) = (0.295 5977, 3.382 976). (13) 

Above the tricritical point, r > r*, a phase transition to a collapsed phase was ob- 
served for w' (.) = r- ' ,  as w was varied. Our aim here is to  explain this observation 
and derive the exact values of (w*, 7") analytically. 

For T = 1, the largest eigenvalue is known to be [2] 

from which it follows immediately that 

w* (7 = 1) = 4 - 1 = 0.4142.. . (15) 

and [3] 

(14) = 1 at w* (T = 1). (16) 

In the basis specified by our model, the eigenvectors of the transfer matrix are of the 
form 

with t = w1f2 for the eigenvector, 40, associated with A,. The square of the elements of 
this eigenvector, 4; ( u i ) ,  give the probabilities of finding particular height differences 
between neighbouring columns. From (17), we see that the probability vanishes as 
ui -+ CO for w < 1. Hence, a characteristic length for transverse fluctuations of the 
polymer chain can be defined as 

ty = - (Inw)-' (18) 

when T = 1. It is also possible to calculate the largest eigenvalue for J/rl.BT << 1; 

A o ( + ( G ) + q  l + w  2w3 I+.[(",']. (19) 

kBT kBT (1 - W2)' kB* 

From the results (16) and (19), we find that 

- 0.1035,. . at w* (T = 1). - ( M )  - 4 - 1  
( L )  - - 4 - 
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Figure 2. Schematic phase diagram for the directed polymer. In region I the average 
length of the polymer chain is finite, in region I1 it has infinite length but zero density 
and in region I11 the density is finite. The coordinates of the points marked by a 
cross can be calculated exactly. 

The numerical results presented in [l] showed that w* ( T )  decreases with increasing 
r ,  as shown schematically in figure 2. The other pertinent curve in figure 2 is w r  = 1, 
which corresponds to a stronger singularity in the grand potential. Physically, it 
corresponds to a transition above which the grand potential is extensive. In region I 
of figure 2,  A, < 1 and the average length of the polymer is finite. On approaching w*, 
the average length diverges and in region I1 it is infinite, with 1 < A, < 00. However, 
the density of monomers on the lattice is zero in both regions I and 11. 

In region 111, the density of monomers is finite and A, scales exponentially with the 
width of the lattice, Ny, if the model is defined on a series of strips of finite width. On 
increasing w at fixed r > r*, a transition takes place from the finite-length polymer 
region I to the dense polymer region 111. This will occur at U' ( r )  defined by 

w' ( r )  = r-' for r > r*. (21) 

This condition can be understood physically by noticing that w r  is an efect ive  fugacity 
for monomers with nearest-neighbour bonds. Since, for w r  > 1, the free energy 
is dominated by contributions from polymer configurations containing a macroscopic 
(extensive) number of nearest-neighbour bonds, a transition is expected across W T  = 1. 

At the collapse transition, both the average length of the polymer chain, ( L ) ,  and 
the average number of nearest-neighbour bonds, ( M ) ,  become macroscopic; that is, 
both ( L )  /V  and ( M )  /V  become non-vanishing in the infinite volume limit, V + CO. 

This must occur at  a ~ricri~ical  point, (w* ,  r*), located at  the intersection of the lines 
w* ( r )  and W T  = 1. Thus, (w*, r*) is defined by 

w*r* = 1 and A, (w*, T* )  = 1. (22) 

Substituting w = 7-l in the transfer matrix, its structure simplifies, allowing once 
again an analytic treatment. The eigenvectors of T are of the form 

with the maximum eigenvalue occurring for IC = 0: 
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Hence, 

w* = f [(17 + 3&1/ii)”~ + (17 - 3 & m )  ‘ I3  - 11 = 0.295 597 7 4 . .  . (25) 

with 

r* = (U*)-’ = 3.382 9 7 5 7 . .  . (26) 

in agreement with the numerical calculations. From the largest eigenvector, we see 
that all height differences are degenerate along w r  = 1 (that is, the probability density 
is uniform). 

The numerical study in 111 also considered the transitions that occur in the presence 
of adsorbing surfaces. A multicritical point, where adsorption and collapse transitions 
occur simultaneously, was identified at (w*, r*, K * ) ,  where w* and r* are given by 
equations (25) and (26) and K* is the critical value of the relevant Boltzmann factor 
for the surface binding potential. For r = 1 ,  the phase boundary between bound and 
unbound polymer phases is 

K ( l - U )  = 1 (27) 

[2,3]. For the tricritical point, we expect the phase boundary to be given by 

which gives the exact value at the multicritical point, 

(29) 
* 112 -1 

IC* = [I - (U ) ] = 2.191 4878. . .  

in agreement with the numerical calculations. 

This study was motivated by Dr J 0 Indekeu’s conjecture for the exact values of the 
parameters at  the collapse-adsorption transition (equations (25), (26) and (29)). We 
would like to thank Dr Indekeu and Dr D B Abraham for helpful discussions and 
suggestions which have stimulated phases of this work. 

Note a d d e d  in p r o o f .  In collaboration with D P Foster (Oxford) we have now p r o v e d  that the phase 
boundary in the ( 6 , ~ )  plane between the bound and collapsed phases is given exactly by 

and that between the collapsed and unbound phases by 

7 = T* K. < n*. 
These results have been obtained independently by F Igloi (Koln). 
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